Расчет потока излучения в солнечных концентраторах в приближении касательной плоскости

А.Ю. Гаевский, д.ф.-м.н,
НТУУ «КПИ», каф. відновлюваних джерел енергії

Предложен метод расчета распределения интенсивности излучения в солнечных концентраторах произвольной формы, основанный на приближении касательной плоскости Кирхгоффа. Получены аналитические выражения для потока излучения, отраженного от поверхности концентратора, представленного в виде набора локально плоских сегментов, касательных к границе раздела сред. Метод может быть применен при решении задач концентрирования солнечного излучения и оптимизации формы концентраторов. С помощью этого метода также легко проводить сравнительный анализ эффективности концентраторов и приемников различного типа.

Запропоновано метод розрахунку розподілу інтенсивності випромінювання в сонячних концентраторах довільної форми, заснований на наближенні дотичної площини Кирхгофа. Отримані аналітичні вирази для потоку випромінювання, відбитого від поверхні концентратора, представленого у вигляді набору локально плоских сегментів, дотичних до границі розділу середовищ. Метод може бути застосований до вирішення задач концентрування сонячного випромінювання і оптимізації форми концентраторів. За допомогою цього методу також легко проводити порівняльний аналіз ефективності концентраторів та приймаць різного типу.

The method of the radiation intensity distribution calculation for solar concentrator with arbitrary shape based on the Kirchhoff tangent plane approximation has been proposed. The analytical expression for the radiation flux reflected from the concentrator surface represented by locally flat segments has been obtained. This method can be applied for optimization solar concentrator shape and comparative analysis of the efficiency concentrators and receivers of various types.

Ключевые слова: солнечные концентраторы, поток излучения, приближение касательной плоскости, вектор Пойнтинга, оптимизация концентраторов, система рефлектор-приемник.
Большинство методов расчета солнечных концентраторов основывается на приближении геометрической оптики, согласно которому вычисляется путь световых лучей в области концентратора, ограниченного отражающей поверхностью (зеркалом) с заданными оптическими свойствами (см., например [1, 2]). Согласно этому приближению отражающая поверхность считается идеально гладкой, а коэффициент отражения равным единице при любых углах падения. Интенсивность лучей, отраженных зеркалом концентратора, при этом, как правило, не рассматривается. В то же время для определения потока энергии излучения, падающего на приемник (ресивер) необходим корректировый расчет распределения интенсивности излучения внутри концентратора с учетом возможной зависимости коэффициента отражения от угла падения.

В данной работе разработан метод расчета распределения потока излучения в солнечных концентраторах, в котором учитываются указанные выше особенности. Метод может быть применен для вычисления потока излучения, отраженного зеркалом произвольной формы, и потока, который падает на поверхность приемника также произвольной формы, расположенным в любой точке концентратора. В основу предложенного метода положено квазиклассическое приближение Кирхгоффа, называемое также приближением касательной плоскости [3], которое применяется к отдельным участкам отражающей поверхности (сегментам). Согласно этому приближению отражающая поверхность разбивается на локально плоские сегменты, касательные к границе раздела сред. Очевидно, такое рассмотрение возможно, когда длина волны \(\lambda \ll L \) где \(L \) – характерный размер сегментов.

Напряженность электромагнитного поля солнечного излучения можно рассматривать как спектральное разложение на плоские гармоники \(E(r, \omega) \), где \(r \) – радиус-вектор текущей точки, \(\omega \) – частота гармоники. Волны \(E(r, \omega) \) считаются неполяризованными и некогерентными, что отвечает природе солнечного излучения, и описываются скалярными волновыми уравнениями [4]. Полное электромагнитное поле
является спектральной суммой гармонических компонент. Решение граничной задачи отражения гармоники от поверхности дается интегралом Кирхгоффа, который в дальней зоне дифракции имеет вид [5]:

\[
E_r(r) = -\int ds' G(r,r')n'(i\mathbf{k}_r + \nabla')E(r')
\] \hspace{1cm} (1)

где \(E_r(r)\) - амплитуда отраженной волны (символ частоты \(\omega\) опущен), \(r'\) - радиус-вектор точки на поверхности, \(n'\) и \(\nabla'\) - нормаль поверхности и оператор градиента соответственно, \(k_r\) - волновой вектор отраженной волны, \(G(r,r')\) - статическая функция Грина бесконечной среды. Поверхностный интеграл (1) в принятом приближении распадается на сумму интегралов по сегментам с нормалями \(n_j\). После преобразований получаем

\[
E_r(r) = -\frac{ie^{i\theta_0}E_0}{4\pi r} \sum_j C_j F_j,
\] \hspace{1cm} (2)

\[
F_j = \oint ds_j \left[R(\theta_0, \alpha_j) \mathbf{v} - \mathbf{w}\right] n_j \exp(i\mathbf{v} r_j),
\] \hspace{1cm} (3)

где \(\mathbf{v} = k_o - k_r\) - вектор рассеяния, \(k_o\) - волновой вектор падающей волны \((k_o = \frac{2\pi}{\lambda}, \lambda\) - длина волны), \(\mathbf{w} = k_o + k_r\), \(R(\theta_0, \alpha_j)\) - локальный коэффициент отражения, зависящий от угла падения \(\theta_0\) и угла наклона сегмента \(\alpha_j\), отсчитанных от оси \(z\) (рис.1). Постоянные коэффициенты \(C_j\) в формуле (2) определяются из закона сохранения энергии на поверхностях сегментов. На рис. 1 дана иллюстрация геометрии отражения от сегмента, когда форма рефлектора не меняется с координатой \(y\) и зависит лишь от двух координат: \(x\) и \(z\). Отметим, что зеркальному отражению от сегмента соответствует угол отражения \(\theta_r = -\theta_0 - 2\alpha_j\).

Протяженность каждого сегмента должна быть достаточно большой, чтобы не сказывались краевые эффекты. Аналитические оценки и модельные расчеты, проведенные
в [6, 7], показывают, что отражение от плоского участка можно считать почти зеркальным (превышение зеркального пика над фоном на один порядок), когда отношение длины сегмента L к длине волны $L/\lambda > 10^3$. Это с запасом выполняется для волн оптического диапазона с длиной волны $\lambda \leq 10^{-4}$ см и при выборе в реальных расчетах сегментов с размерами $L \sim (10^{-1} - 1)$ см.

От интеграла $F_j(3)$ в наклонных координатах перейдем к интегралу в координатах x, y. В результате получим:

$$
F_j = k_0 L_y C_j A_j \exp \left(i \mathbf{v}_j \right) \frac{\exp \left(i \beta_j x \right)}{\cos \alpha_j} \int_{-l_r/2}^{l_r/2} dx \exp \left(i \beta_j x \right)
$$

(4)

где L_y — длина сегментов (рефлектора) вдоль направления y; $\mathbf{p}_j = X_j \mathbf{e}_x + Z_j \mathbf{e}_z$ — радиус вектор средины сегмента j; l_r — длина проекции сегмента j на ось x; величины A_j и β_j равны:

$$
A_j = (1 - R_j) \cos(\theta_0 + \alpha_j) - (1 + R_j) \cos(\theta_r - \alpha_j)
$$

$$
\beta_j = k_0 \left[\sin(\theta_0 + \alpha_j) - \sin(\theta_r - \alpha_j) \right].
$$

(5)

Рассмотрим рассеяние на отдельном сегменте. После интегрирования в (4) получим

$$
F_j = C_j k_0 S_j A_j \exp \left(i \mathbf{v}_j \right) \frac{\beta_j L_j}{2}.
$$

(6)

где $S_j = L_p L_y$ — площадь сегмента, L_j — длина сегмента в плоскости падения; функция sinc определяется как $\text{sinc} x = \sin x / x$.

Поток энергии излучения, отраженного сегментом j в направлении θ_r, определяется вектором Пойнтинга $\mathbf{P}_j(\mathbf{r})$, который для неполяризованного излучения (2), как показывают вычисления, равен:
\[\Pi_j(r) = \frac{cE_0^2}{128\pi^3 r^2} |F_j|^2 \mathbf{n}_r, \]
где \(\mathbf{n}_r = \frac{\mathbf{r}}{r} \). Поток падающего излучения дается выражением \(\Pi_0 = \frac{cE_0^2}{8\pi} \mathbf{n}_0 \), и соответственно мощность, собираемая единицей площади сегмента, равна \(\Pi_{0j} = \Pi_0 \mathbf{n}_j = \Pi_0 \cos(\theta_0 + \alpha_j) \). Эффективное сечение рассеяния в направлении \(\mathbf{n}_r \) [8]

\[\sigma_j(\mathbf{n}_r) = \lim_{r \to \infty} \frac{r^2 \Pi_j(r)}{\Pi_{0j}}, \]

определяется как площадь, которая способна выхватить из плотности энергии падающего излучения часть энергии, равную отраженной энергии. Сечение \(\sigma_j \), другими словами, равно отношению:

\[\sigma_j = \frac{\text{Мощность, отраженная в направлении } \mathbf{n}_r}{\text{Мощность, падающая на единицу площади перпендикулярно потоку}} \]

или после использования равенств (6) – (8) оно оказывается равным

\[\sigma_j = \frac{C_j^2 S_j^2 A_j^2}{4\lambda^2 \cos(\theta_0 + \alpha_j)} \left(\frac{\sin \beta_j L_j}{2} \right)^2 \]

Перейдем от сечения \(\sigma_j \) к отражательной способности \(R \), которая выражается отношением [4]

\[R = \frac{\text{Мощность отраженного излучения}}{\text{Мощность падающего излучения}} \]

Далее рассматривается зеркальное отражение в пренебрежении краевыми эффектами. Числители в (9) и (11) в этом случае одинаковы, а знаменатели отличаются на множитель \(S_j \cos(\theta_0 + \alpha_j) \). В результате

\[R = \frac{\sigma_j}{S_j \cos(\theta_0 + \alpha_j)} = \frac{C_j^2 S_j R_j^2}{\lambda^2} \]
Коэффициент C_j определяется из условия сохранения энергии на границе раздела, которое выглядит как $R + T = 1$ [4], и оказывается равным $\lambda S_j^{1/2}$, соответственно $R = R_j^2$, как и должно быть.

В рассматриваемой схеме, что рассеяние на каждом сегменте поверхности происходит независимо от рассеяния на других сегментах, поэтому общую мощность волн $P(n_j)$, рассеянных в направлении n_j, можно вычислить как сумму произведений сечений σ_j на проекции соответствующих сегментов, перпендикулярные входящему потоку:

$$ P(n_j) = \Pi_0 \sum_j R_j^2(n_j)S_j \cos(\theta_0 + \alpha_j), \quad (13) $$

Если считать, что коэффициент отражения R_j не зависит от длины волны, формулу (13) можно применять для всего спектра солнечного излучения, понимая под Π_0 солнечную radiацию за 1 сек. При этом $P(n_j)$ является интегральной мощностью излучения, отраженного вдоль направления n_j. Формулы настоящей работы можно обобщить на случай шероховатой поверхности зеркала, пользуясь двухмасштабной моделью для неровных границ раздела [7].

В предлагаемом посегментном методе область внутри рефлектора разбивается квадратной сеткой на пикселя (рис.2), и задача вычисления мощности излучения состоит в определении «засветки» пикселов. Используя формулу (13), вычисляется мощность луча, отраженного каждым сегментом, а из геометрических построений определяются пикселя, которые засвечиваются лучом. Степень засветки данным лучом пропорциональна как мощности луча, так и площади пикселя, которую накрывает луч.

Данный метод реализован в виде программы, созданной в среде Visual C++, и применен для расчета распределения мощности излучения внутри рефлекторов параболического, составного параболического типов и фоклинов, а также для систем рефлектор – приемник [9].
Литература

9. О. Ю. Гаевский, О. В. Мельник. XIII Міжнародна конференція "Відновлювана енергетика XXI століття". - АР Крим, 2012, с.____, ____.
Рис.1. Геометрия отражения от наклонного участка поверхности

Рис.2. Схема определения «засветки» пикселя ij сегментом m